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We present a mean-field theory to describe volume phase transitions of side-chain liquid crystalline �LC�
gels, accompanied by isotropic-nematic-smectic-A phase transitions. Three different uniaxial nematic phases
�N1, N2, and N3� and smectic-A phases �S1, S2, and S3� are defined by using orientational order parameter Sm

of side-chain liquid crystals �mesogens�, Sb of semiflexible backbone chains, and a translational order param-
eter � for a smectic-A phase. We derive the free energy for smectic-A phases of side-chain LC gels dissolved
in an isotropic solvent and examine the swelling curve of the LC gel, the orientational order parameters, and
the deformation of the LC gel as a function of temperature. We find that the LC gel discontinuously changes
the volume at an isotropic-nematic, an isotropic-smectic-A, and a nematic-smectic-A phase transition.
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I. INTRODUCTION

Swelling behavior of a liquid crystalline �LC� gel dis-
solved in a solvent molecule has been the subject of many
theoretical and experimental studies. A liquid crystalline or-
dering such as a nematic and a smectic ordering can be a
major cause in the shape change of LC elastomers �1–5�.
Recent experimental studies �6–11� have demonstrated that a
nematic ordering can take place the first-order volume phase
transition of nematic gels. These volume changes are in-
duced by changing temperature and applied electric fields
�12–16�. The experimental swelling curves have been theo-
retically described in the context of Flory and Maier-Saupe
models �9,17–19�.

When we consider a nematic phase of LC gels or LC
polymers, there are three possible types of the nematic phase,
which was first considered by Wang and Warner �20�. The
three nematic phases can be defined by two orientational
order parameters: one is Sm of nematogenic side-chains �me-
sogens� and the other is Sb of a semiflexible backbone chain.
When one order parameter is positive, the other can be posi-
tive or negative. Figure 1 shows three principal uniaxial
nematic phases for a side-chain LC polymer. The N1 phase
�Sm�0 and Sb�0� is defined as that the mesogens are
aligned along to the ordering direction �z� and the backbone
chain is perpendicular to the mesogens. The N2 phase
�Sm�0 and Sb�0� is defined as that the backbone chain is
aligned along to the ordering direction z and the mesogens
are perpendicular to the backbone chain. The third N3 phase
is defined by Sm�0 and Sb�0, where the backbone and
mesogens are oriented to the ordering direction z. In the N1
phase, the backbone chain adopts an oblate shape. In the N2
and N3 phases, a prolate shape of the backbone is obtained.
The identification of these nematic phases has been based
on an examination of the shape of the backbone chain
using x-ray diffraction �21,22� and neutron scattering
�23,24�. The N2 phase is unusual because the side chains are
not aligned with the director �z axis�. Such a polymer re-

quires both mesogenic side groups and a mesogenic rigid-
backbone chain �25,26�, where the backbone chain and side
groups simultaneously and independently are ordered. Re-
cently, we have presented a mean-field theory to describe
these nematic phases �N1, N2, and N3� for a side-chain LC
gel dissolved in an isotropic solvent and predicted volume
phase transitions �27�.
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FIG. 1. �Color online� Schematic representations of three nem-
atic and smectic-A phases for side-chain liquid crystalline gels. De-
pending on two orientational order parameters, one is the Sm of
nematogenic side chains �mesogens� and the other is the Sb of semi-
flexible backbone chain, we can define a nematic N1 phase with
Sm�0 and Sb�0, a N2 phase with Sm�0 and Sb�0, and a N3

phase with Sm�0 and Sb�0. In the N1 phase, the backbone chain
adopts an oblate shape. When these nematic domains are stacked
into a smectic-A phase, three different smectic-A phases appear,
depending on the value of the orientational order parameters Sm and
Sb. In the S1 phase, the backbone chain is distributed on the x-y
plane, which is perpendicular to a nematic director. In the S2 and S3

phases, the backbone chain has a prolate shape within a layer of a
smectic-A phase.
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When these nematic domains are stacked into a smectic
layer, we can expect three possible types of the smectic-A
phase depending on the value of the orientational order pa-
rameters Sm and Sb. As shown in Fig. 1, the S1 phase shows
a smectic-A phase with Sm�0 and Sb�0. The backbone
chain between crosslinking points has an oblate shape within
a smectic-A phase. The S2 phase shows a smectic-A phase
with Sm�0 and Sb�0 and the S3 phase shows a smectic-A
phase with Sm�0 and Sb�0. In the S2 and S3 phases, the
backbone chain has an prolate shape within a smectic layer.
When temperature decreases, we can expect nematic
�N1�-smectic-A �S1� phase transition �N1S1�, N2S2, etc.

These anisotropic deformations of smectic gels are
strongly dependent on the chemical structures of networks,
such as side-chain or main-chain liquid crystalline elas-
tomers and interactions between a backbone chain and a side
chain. Moreover, isotropic-smectic and nematic-smectic
phase transitions may be a major cause of the volume
changes of liquid crystalline gels. There is no experimental
evidence about volume phase transitions of smectic gels dis-
solved in isotropic solvent molecules, although it is worth
giving a first attempt to understand the relations between the
volume changes and the liquid crystalline phase transitions
stated above paragraph. Recently Adams and Warner �AW�
�28� presented the elastic free energy of smectic elastomers
and confirmed some experimentally observed elastic behav-
ior such as stress-strain curves of smectic-A elastomers.
However, the AW model cannot describe the phase transi-
tions such as isotropic-smectic and smectic-nematic ones be-
cause it does not include order parameters for nematic and
smectic-A phases. To describe the volume phase transitions
of smectic gels, we have to take into account these order
parameters in the elastic free energy of smectic gels because
the order parameters continuously or discontinuously change
through the phase transitions. The elastic free energy includ-
ing the orientational order parameter has been presented by
Warner and Terentjev �1� for nematic elastomers, known as
neoclassical rubber theory. However, there is no attempt for
elastic free energy including the translational order param-
eter of a smectic-A phase at least a mean-field level.

In this paper we derive the elastic free energy as a func-
tion of deformations of smectic gels, orientational order pa-
rameters, and a translational order parameter of a smectic-A
phase. We extend the previous model for the nematic phases
�N1, N2, and N3� �27� to the smectic-A phases �S1, S2, and
S3� of a LC gel and we construct the free energy of smectic
gels dissolved in isotropic solvent molecules. In the next
section, we derive the elastic free energy of the smectic-A gel
and the free energy of the LC gel. In Sec. III, we obtain the
equilibrium values of the order parameters and the chemical
potential of a solvent molecule inside the LC gel. In the Sec.
IV, we show some numerical results. We find that
isotropic-smectic-A and nematic-smectic-A phase transitions
induce volume phase transitions of the LC gels.

II. FREE ENERGY OF LIQUID CRYSTALLINE GELS

We consider a side-chain liquid crystalline polymer gel,
consisting of a semiflexible backbone chain and LC side

chains �mesogens�, dissolved in a solvent. Let n be the num-
ber of segments on a side-chain LC polymer between
crosslink points. The repeating unit on the side-chain LC
polymer consists of a mesogen with the axial ratio nm and a
backbone chain which has the number nb of segments. We
here assume that all segments �backbone chain and side
group� to be the same width, which is taken as the unit length
a. Then the total number of units of length in a repeating unit
is nm+nb and the total number of segments on the side-chain
LC polymer is given by n= �nm+nb�t, where t is the number
of repeating units. Let Ng and N0 be the numbers of the
side-chain LC polymers and solvent molecules inside the gel,
respectively.

The volume fraction of the gel dissolved in a solvent is
given by

�g = a3nNg/V , �1�

where a3 is the volume of an unit segment, V=a3Nt is the
volume of the gel, and Nt�=nNg+N0� shows the total number
of segments including polymers and solvent molecules. The
volume of the gel is also given by V=NgRxRyRz, where Ri is
the distance along the i�=x ,y ,z� axis between crosslink
points of the gel. The volume fraction of the mesogen is
given by

�m = a3nmtNg/V = w�g, �2�

where w�nm / �nm+ns� is the fraction of mesogen segments.
The volume fraction �b of the backbone chain is given by
�b= �1−w��g and we have �b+�m=�g.

To derive the equilibrium volume fraction �g of the gel,
we consider thermodynamics of our systems. The free energy
of the LC gel can be given by

F = Fel + Fmix + Fnem + Fsm, �3�

where the first term Fel shows the elastic free energy due to
the strain of a liquid crystalline gel, the second term shows
the free energy of mixing of a gel with a solvent molecule,
the third term corresponds to a nematic ordering of the gel,
and the last term shows the free energy of smectic ordering.
When Fel=0, the free energy F results in that of the bulk
solution of a LC gel without deformations. In the following
sections, we derive the four free energies.

A. Elastic free energy

The first term Fel shows the elastic free energy due to the
deformation of a gel, which shows an isotropic state, nem-
atic, and smectic-A phase. This free energy consists of three
terms

Fel = Fel,1 + Fel,2 + Fel,3, �4�

where the first term shows the elastic free energy due to the
deformation of nematic gels �1,29,30�. The second term is
the pairing of functions at the ends of the chain in the for-
mation of networks, which is given by Flory’s elastic theory
�31,32�. The last term corresponds to the layer compressibil-
ity of smectic-A gels. In the following we introduce the three
terms.

We first briefly introduce the elastic free energy �Fel,1� for
nematic polymers. This term is given by the deformation of
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backbone chains of the LC gel and then it can be given by
applying the classical rubber theory to nematic elastomer �1�.
Let R be the end-to-end distance of a backbone polymer and
N�=nbt� be the total number of segments on a backbone
chain. In uniaxial polymers, the mean-square end-to-end dis-
tance is given by

�Ri · R j� =
1

3
�ijL , �5�

where the effective step lengths form a tensor �ij and L
=aN is the contour length of the chain. Here, we take that a
nematic director is along the z axis. In uniaxial polymers,
mean-square sizes in the plane perpendicular to director n
are identical: Rx=Ry. For such nematic polymers, we here
consider for the step length �ij of a freely jointed nematic
polymer chain. Using Eq. �5�, the step length is given by

�ij =
3a

N
�
i,j

N

�ui · u j� , �6�

where u is the unit vector along the bond vector of a seg-
ment. In the freely jointed model, there is no correlation
between the different bonds and then we have ui ·u j =ui

2�ij.
The coordinate projections in the frame where the director is
along z give uz=cos �, uy =sin �, and ux=sin �, where � is
the angle between the bond and the z direction. This means
that the backbone chain describes a random walk with step
lengths a cos � in the z direction and a sin � in the xy plane.
Then, from Eqs. �5� and �6�, the spontaneous mean-square
radius Rs= �Rx0 ,Rx0 ,Rz0� of the backbone chain in a nematic
phase along the z axis and the perpendicular direction are
given by

Rz0
2 =

1

3
�	L = a2N�cos2 �� = R0

2�1 + 2Sb� , �7�

Rx0
2 =

1

3
��L = a2N�sin2 �� = R0

2�1 − Sb� , �8�

respectively, where �� and �	 are the effective step lengths in
the directions parallel and perpendicular to the director and
we have used the nematic order parameter Sb
= �3 /2��cos2 ��−1 /2 of the backbone chain. In the nematic
phase the spontaneous radius depends on the order param-
eter. In an isotropic phase, Sb=0, the spontaneous radius of
the chain results in R0=a
N. The reference state of the de-
formation strains is given by the spontaneous radius Rs of
the chain. When a chain of the spontaneous radius Rs as a

reference state is transformed to R= �̂Rs by a strain, the de-

formation tensor �̂ is given by

�̂ = ��xx 0 0

0 �yy 0

0 0 �zz
� , �9�

where the deformation of the gel is characterized by the prin-
cipal ratios

�zz � Rz/Rz0 = Rz/�R0

1 + 2Sb� , �10�

�xx = �yy � Rx/Rx0 = Rx/�R0

1 − Sb� . �11�

The number of configurations of the polymer chain, con-
nected two crosslinks separated by a distance R in the nem-
atic network, is proportional to the anisotropic Gaussian dis-
tribution

p�R� 	 exp−
3

2L
Ri�ij

−1Rj� = exp−
3Rx

2

2��L
−

3Ry
2

2��L
−

3Rz
2

2�	L
� .

�12�

Then the elastic entropy of the polymer chain is given by

S1�R� = kBT ln p�R� . �13�

Using the deformation �ii, Eq. �13� can be written as

S1�R� = −
kB

2
��xx

2 + �yy
2 + �zz

2 � . �14�

Then the entropy change due to the deformation from the
initial spontaneous state Rs to the current state R is given by


S1 = S1�R� − S1�Rs� = −
kB

2
��xx

2 + �yy
2 + �zz

2 − 3� . �15�

The elastic free energy Fel,1 due to the deformation of the
gel, consisting of Ng backbone chain, is given by

Fel,1 = − NgT
S1 =
kBTNg

2
��xx

2 + �yy
2 + �zz

2 − 3� . �16�

Equation �16� is the free energy of a deformed rubber, where
�ii is diagonal with no shear deformations, known as a neo-
classical rubber theory for uniaxial extension �1�. Note that
the anisotropic of the backbone chain resides in the factor �ii,
which is given by the orientational order parameters �Eqs.
�10� and �11��.

Another additional term in the elastic free energy is given
by the pairing of functions occurring at the ends of the chain.
According to the Flory elastic theory �31,32�, the probability
of occurrence of a configuration in which � pairs of reactive
sites are suitably situated for combination to take place is
proportional to ��V /V��, where �V is the volume within
which one junction must occur relative to its reaction partner
and V�=RxRyRz� is the volume of the polymer chain, depend-
ing on R. The entropy of the pairing is given by

S2�R� = − kB� ln��V/V�R�� . �17�

Then the entropy change due to the deformation from the
initial spontaneous state Rs to the current state R is given by


S2 = S2�R� − S2�Rs� = kB� ln��xx�yy�zz� . �18�

For a perfect network of functionality � �or mean function-
ality�, the total number Ng of the chains, consisting of the
gel, is Ng=�J /2, where J is the number of junctions on the
gel. Then the free energy change due to the dispersion of the
embedded junctions is given by

Fel,2 = − NgT
S2 = − kBTNg�2/J�ln��xx�yy�zz� . �19�

Elastic free energies Fel,1 and Fel,2 do not include the
deformation of a smectic phase. We here take into account
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the layer compressibility for a smectic-A �Sm-A� phase
�28,33,34�. The smectic-A phase of the gel is characterized
by a density �or volume fraction� modulation along a z di-
rection to the layers

�g�r� = �g�1 + � cos�q0�z + u�r���� , �20�

where �g is the mean value, q0 is the periodicity wave num-
ber, and u�r� is the layer displacement or an arbitrary phase
�35�. In an isotropic and a nematic phase, �=0. Then, for the
natural choice of a order parameter of Sm-A phases is �,
which is defined as the amplitude of a one dimensional den-
sity wave along z axis. To take into account both � and u�r�,
it is convenient to define the complex order parameter �35�

��r� = � exp�iq0u�r�� , �21�

where � generally depends on a position, however, we as-
sume that � is constant in the mean-field level. The complex
order parameter varies from place to place and then we have
to add gradient terms which express the tendency for the
Sm-A phase to be homogeneous. Such free energy of the
displacements is given by �33–35�

Fel,3 = B� ��

�z
�2

, �22�

where B is the layer compressibility and we neglect the layer
bending caused by a splay deformation: ��� /�x�2+ ��� /�y�2.
As schematically shown in Fig. 2, the polymer chain is con-
fined into the smectic layer of the length Rz0 and the dimen-
sionless wave number of the Sm-A phase is given by q0
=2 / �Rz0 /a�. The length Rz is Rz=u�z+Rz0�−u�z�+Rz0 and
so the layer displacement is given by

�u/�z = �Rz − Rz0�/Rz0 = �zz − 1. �23�

The layer compressibility for a smectic-A phase is given by

Fel,3 = B� ��

�z
�� ���

�z
� = B�2q2� �u�z�

�z
�2

= B�2� 2

Rz0/a�
2

��zz − 1�2=
42B�2

nbt�1 + 2Sb�
��zz − 1�2,

�24�

where �� denotes complex conjugate.
Then the elastic free energy for a LC gel, which shows

isotropic, nematic, and Sm-A phases, is given by the sum of
the three terms

�Fel = ��Fel,1 + Fel,2 + Fel,3�

= Ng1

2
��xx

2 + �yy
2 + �zz

2 − 3�

− �2/J�ln��xx�yy�zz� + B1��zz − 1�2� , �25�

where �xx=�yy for an uniaxial deformation. We also find the
dimensionless layer compression modulus

B1 �
b�2

nbt�1 + 2Sb�
, �26�

where ��1 /kBT, T is the absolute temperature, and kB is the
Boltzmann constant. The b�42B /� is the reduced layer
compression modulus per a chain and �=NgkBT is the shear
modulus. Note that the dimensionless layer compression
modulus B1 depends on the order parameters Sb and �.

Adams and Warner �28� derived the elastic free energy of
smectic elastomers for the deformation of stretching parallel
to the layer normal, including the deformation �zx of z di-
mension by layer rotation. The shear �zx starts at a threshold
and lead to torques when the deformation �zz increases.
Equation �25� can correctly describe the deformation without
torques. The free energy obtained by Adams and Warner
does not include the order parameters Sb and � and so it is
impossible to describe phase transitions such as isotropic-
nematic, isotropic-smectic, and nematic-smectic phase tran-
sitions. We emphasize that Eq. �25� can be used for liquid
crystalline phase transitions. When the values of Sb and � are
nonzero, Eq. �25� results in AW’s elastic free energy with
�zx=0, omitting the term Fel,2. The neoclassical nematic rub-
ber theory does not take into account the term Fel,2. If we
consider isotropic volume changes of the gel, we may need
this term. However, the free energy Fel,2 is not an essential
part for liquid crystalline elastomers because it corresponds
to the pairing of functions. When S=0 and �=0, Eq. �25�
results in the elastic free energy for isotropic deformations,
which were derived by Flory �31�.

The volume fraction �g of the gel is given by

�g =
a3n

RzRx
2 =

1

c1

A�zz�xx

2
, �27�

where we define

A � �1 + 2Sb��1 − Sb�2 �28�

and

c1 � �nbt�1.5/n . �29�

Using Eq. �27�, the elastic free energy �Eq. �25�� can be
expressed as

�Fel/Nt =
�g

n  1

c1

A�g�zz

+
1

2
�zz

2 −
3

2
+

2

J
ln�c1


A�g�

+ B1��zz − 1�2� . �30�

Because the strain tensor �ij, in Eqs. �10� and �11�, is a
function of the orientational order parameter Sb, it is conve-

Rz0

Rz

u(z)

z

u(z+R )z0

FIG. 2. Layer displacement u�z� for a smectic-A phase.
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nient to use the deformation ��i�, related to the isotropic
Gaussian chain, as

�z � Rz/R0, �31�

�x � Rx/R0 = Ry/R0. �32�

Using �z, the volume fraction is given by

�g = 1/�c1�z�x
2� , �33�

and then Eqs. �10� and �11� are rewritten as

�zz = �1 + 2Sb�−1/2�z, �34�

�xx = �1 − Sb�−1/2�c1�g�z�−1/2. �35�

Substituting Eqs. �34� and �35� into Eq. �25�, the elastic free
energy can be expressed as

�Fel/Nt =
�g

n  1

c1�g�1 − Sb��z
+

�z
2

2�1 + 2Sb�
−

3

2

+
2

J
ln�c1�g


A� + B1� �z


1 + 2Sb

− 1�2� . �36�

In this section we derive the elastic free energy of the LC
gels due to the deformation. In the following sections, we
obtain the bulk free energy for isotropic, nematic, and
smectic-A phases.

B. Mixing free energy

The second term Fmix in Eq. �3� shows the free energy for
an isotropic mixing of a gel with a solvent molecule. Accord-
ing to the Flory-Huggins theory �36�, this free energy is
given by

�Fmix/Nt = �1 − �g�ln�1 − �g� + ��g�1 − �g� , �37�

where � shows the isotropic �Flory-Huggins� interaction pa-
rameter between a gel and a solvent molecule. In this paper
we take �=0, where the solvent molecule is a good solvent
for the gel.

C. Nematic free energy

The third term Fnem in Eq. �3� shows the free energy for
nematic ordering. To describe the nematic behaviors, we take
into account the orientational-dependent �Maier-Saupe� inter-
actions �27,35,37�. We consider three coupling terms of the
anisotropic interactions. Let �mm be the orientational depen-
dent �Maier-Saupe� interactions between the mesogens, �mb
be that between the mesogen and the backbone, and �bb be
that between the backbone chains. Then, the nematic free
energy is given by

�Fnem/Nt =
�m

nm
� fm���ln 4fm���d�

+
�b

nb
� fb���ln 4fb���d� −

1

2
�mm�m

2 Sm
2

− �mb�m�bSmSb −
1

2
�bb�b

2Sb
2, �38�

where d��2 sin �d�, with � is the angle between the liq-
uid crystalline molecules and the director of the orienting
field. When �mb�0, the mesogen prefers along align back-
bone chain. When �mb�0, the mesogen prefers to be perpen-
dicular to backbone chain. The fm��� and fb��� show the
orientational distribution functions of the mesogen and that
of the backbone chain, respectively. The orientational order
parameter Sm of the mesogen is given by

Sm =� P2�cos ��fm���d� , �39�

and the orientational order parameter Sb of the backbone
chain is given by

Sb =� P2�cos ��fb���d� , �40�

where P2�cos ���3�cos2 �−1 /3� /2.

D. Smectic free energy

The last term Fsm in Eq. �3� shows the free energy for
smectic-A ordering. To describe smectic-A phases, we here
assume that the centers of gravity of mesogens are periodi-
cally placed along z̃��z /nm� axis. Based on the McMillan’s
free energy for a smectic-A phase �38,39�, it is given by

�Fsm/Nt =
�m

nm
�

0

1

f�z̃�ln f�z̃�dz̃ −
1

2
��m

2 �Sm��2, �41�

where the first term shows the entropy change due to a smec-
tic ordering and f�z̃� is the distribution function for molecu-
lar position along z̃ axis. In inhomogeneous systems, the vol-
ume fraction of the segments on the gel is given by �g�z̃� as
a function of a position z̃. Using the distribution function
f�z̃�, it is given by �g�z̃�=�gf�z̃�, where �g is the mean vol-
ume fraction of the gel. When the system is positionally
homogeneous, we have f�z̃�=1 and Eqs. �41� and �21� be-
come zero. The distribution function is consistent with Eq.
�20�. The parameter � shows the dimensionless interaction
parameter between mesogens for a smectic ordering and can
vary between 0 and 2 �38�. Using the distribution function
f�z̃�, the scalar order parameter � in Eq. �21� for a smectic-A
phase can be calculated by

� = �
0

1

cos�2z̃�f�z̃�dz̃ . �42�

When �=0, the complex order parameter becomes zero.
In the original McMillan’s model for a smectic-A phase,

the order parameter for the smectic-A phase is given by
�P2�cos����cos�2z̃��. In Eq. �41�, we here used the simpli-
fication of the McMillan theory obtained by decoupling the
mixed order parameter: �P2�cos����cos�2z̃��=Sm�. It has
been reported that the decoupled model for the smectic-A
phase is in quantitative agreement with the original McMill-
an’s theory �40�. In the next section, we derive the deforma-
tion �z, the order parameters �Sm ,Sb ,��, and the volume frac-
tion �g of the gel in a thermal equilibrium.
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III. EQUILIBRIUM SWELLING OF LIQUID
CRYSTALLINE GELS

A. Equilibrium value of �zz

The equilibrium value of the elongation �zz is determined
by ��F /��zz���g,Sm,Sb,��=0 or equivalently ��F /��z���g,Sm,Sb,��
=0. This yields

�zz −
1

c1

A�g�zz

2
+ 2B1��zz − 1� = 0. �43�

Substituting Eq. �27� into Eq. �43�, we obtain

�xx
2 = ��zz

3 �1 + 2B1� − 2B1�zz
2 � , �44�

and the volume fraction of the gel is given as a function of
�zz or �z,

�g =
1

c1

A��zz

3 �1 + 2B1� − 2B1�zz
2 �

. �45�

When �=0, or B1=0, Eq. �43� yields the deformations of
nematic gels �27�

�z =  1 + 2Sb

c1�g�1 − Sb��1/3

�46�

and

�x =  1 − Sb

c1
2�g

2�1 + 2Sb��1/6

. �47�

Apparently, when Sb=0, or in an isotropic phase, we have
�z=�x= �c1�g�−1/3���iso� for an isotropic deformation.

B. Equilibrium value of orientational order parameters

The orientational distribution functions fm��� of the me-
sogen and fb��� of the backbone chain are determined by the
free energy �3� with respect to these functions:

��F/�fb�����fm,f�z�,�g,�z�
= 0, �48�

��F/�fm�����fb,f�z�,�g,�z�
= 0, �49�

with the normalization conditions

� f i���d� = 1,

i = m,b . �50�

These lead to the orientational distribution function

fb��� =
1

Zb
exp��bP2�cos ��� , �51�

�b � nb��bb�bSb + �mb�mSm − D1/�b� �52�

for the backbone chain, where the D1 and the required de-
rivatives are shown in the Appendix and

fm��� =
1

Zm
exp��mP2�cos ��� , �53�

�m � nm��mm�mSm�1 + c�2� + �mb�bSb� �54�

for the mesogen, where c�� /�mm and the constants Zi �i
=m ,b� are determined by the normalization condition �50�.
From Eqs. �50�, �51�, and �53� we obtain

Zi = 4I0��i� , �55�

where the function I0��i� is defined as

Iq��i� � �
0

1

�P2�cos ���qexp��iP2�cos ���d�cos �� ,

�56�

where q=0,1 ,2 , . . .. Substituting Eq. �53� into Eq. �39�, the
orientational order parameter for the mesogen is determined
by the self-consistency equation

Sm = I1��m�/I0��m� . �57�

Similarly, using Eqs. �51� and �40�, we derive the orienta-
tional order parameter for the backbone chain

Sb = I1��b�/I0��b� . �58�

The values of �b �Eq. �52�� and �m �Eq. �54�� show the
strength of a nematic field for a backbone chain and a me-
sogen, respectively. The larger values of �i �or I0��i�� corre-
spond to the lower free energy �see Eq. �66��. It is worth to
give brief explanations of the underlying physics. For ex-
ample, when �bb=0, namely, there is no anisotropic interac-
tion between backbone chains, the nematic phase is domi-
nated by the nematic field ��m� of mesogens. Then when
�bb=0, �mb�0, and �mm�0, the value of �m becomes larger
when Sm�0 and Sb�0. This corresponds to that the N3
phase becomes stable in an equilibrium state �see Fig. 5�. On
the other hand, when �bb=0, �mb�0, and �mm�0, the value
of �m becomes larger when Sm�0 and Sb�0 due to the term
�mbSb in Eq. �54�. This corresponds to that the N1 phase
becomes stable in an equilibrium state �see Fig. 3�. When
�bb�0, �mb�0, and �mm�0, it is easy to understand that the
N3 phase becomes stable. When �bb�0, “�mb�0,” and
�mm�0, the two nematic fields �b and �m compensate. For
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example, when the value of nb is smaller than nm, the nem-
atic field ��m� of a mesogen dominates the system. We then
have Sm�0 and Sb�0 �N1 phase�. For larger nb, however,
the nematic field ��b� of the backbone chain becomes domi-
nant and we then have Sm�0 and Sb�0, which corresponds
to the N2 phase �see Fig. 7�. The value of �bb, the sign of �mb,
and the length nm �or nb� are important to determine the
anisotropic phases of the LC gel.

C. Equilibrium value of translational order parameter

The smectic distribution function f�z̃� of the mesogen is
determined by the free energy �3� with respect to this func-
tion:

��F/�f�z̃���fm,fb,�g,�z�
= 0, �59�

with the normalization condition

�
0

1

f�z̃�dz̃ = 1. �60�

We then obtain

f�z� =
1

W0
exp���m cos�2z̃��� , �61�

where

�m � nm���mSm
2 − D2�� , �62�

D2 �
2b

�nmt��nbt��1 + 2Sb� �z


1 + 2Sb

− 1�2

. �63�

The constant W0 can be determined by Eq. �60� as

Wq��m� = �
0

1

�cos�2z̃��qexp��m cos�2z̃��dz̃ , �64�

where q=0,1 , . . .. Substituting Eq. �61� into Eq. �42�, we
obtain the self-consistency equation for �,

� = W1��m�/W0��m� . �65�

The values of �m �Eq. �62�� show the strength of a smectic
field. The larger values of �m �or W0� correspond to the
lower free energy �see Eq. �67��. On increasing the value of
�m, we have direct isotropic-smectic-A phase transitions
without nematic phases �see Figs. 3 and 5�. The equilibrium
values of three order parameters, Sm, Sb, and �, are deter-
mined by numerically solving the three coupled Eqs. �57�,
�58�, and �65� as a function of temperature and the volume
fraction of a gel.

D. Equilibrium swelling

Substituting Eqs. �51� and �53� into Eq. �38�, the nematic
free energy is given by

�Fnem/Nt =
1

2
�mm�m

2 Sm
2 �1 + 2c�2� + �mb�m�bSmSb

+
1

2
�bb�b

2Sb
2 −

�m

nm
ln I0��m� −

�b

nb
ln I0��b� − SbD1.

�66�

Using the distribution function �61�, the smectic free energy
�41� can be rewritten by

�Fsm/Nt =
1

2
��m

2 �Sm��2 − �mD2�2 −
�m

nm
ln W0. �67�

Then the equilibrium free energy �3� is given by the sum
of Eqs. �36�, �37�, �66�, and �67�. The chemical potential �0
of the solvent inside the gel is given by

���0 − �0
� � = ���F/�N0�Ng

= f − �g�� f/��g�

=
1

n
 1

c1�1 − Sb��z
−

�g

J
� + ln�1 − �g� + �g + ��g

2

+
1

2
�mmSm

2 �m
2 + �mbSmSb�m�b +

1

2
�bbSb

2�b
2

+
3

2
��Sm��2�m

2 , �68�

where f ��F /Nt and �0
� shows the chemical potential of

pure solvents outside the gel. When �=0, Eq. �68� results in
the chemical potential for nematic gels �27�.

The equilibrium volume fraction �g of the gel can be
determined from the balance among the solvents existing
outside and inside the gel

�0��z,Sm,Sb,�,�g� − �0
� = 0, �69�

where the deformation �z is related �g through Eqs. �34� and
�45�. When the osmotic pressure �������0

� −�0�� plotted
against �g contains van der Waals loops, where stability con-
ditions are determined by using the Maxwell construction,
the equilibrium concentration �g can be obtained by �=0.
The region ��� /��g�T�0 corresponds to unstable spinodal
regions.

IV. VOLUME PHASE TRANSITIONS

In this section, we show some numerical results of the
volume phase transitions and deformation of side-chain LC
gels. We here set J=4 for a tetrafunctional network and the
reduced temperature �=4.54nm /�mm and define the aniso-
tropic interaction parameters

cbb � �bb/�mm, �70�

cmb � �mb/�mm, �71�

c � �/�mm, �72�

where cbb, cmb, and c are constants. When cbb=0, the back-
bone chain is sufficiently flexible and does not orient in the
constituent pure state. When the backbone chain is a semi-
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flexible LC polymer, we can take cbb�0. The cmb shows the
nematic interaction parameter between a mesogen and a
backbone chain. The larger values of the anisotropic param-
eter cmb show the stronger attractive interactions between the
backbone chain and mesogen. When cmb�0, the backbone
chain favors to be parallel to the mesogen and when cmb
�0, the backbone chain favors to be perpendicular to the
mesogen. The constant c���0 shows the smectic interaction
parameter between mesogens or McMillan’s parameter for a
smectic-A phase. These parameters are of order of thermal
energy because the interactions considered here essentially
come from van der Waals interaction. Then we assume that
these parameters are of order of 1. In this paper, we take �
=0 �a good solvent condition� in Eq. �37� to emphasize the
“volume phase transitions induced by liquid crystalline or-
dering.” The parameter � controls the swelling of LC gels in
an isotopic phase. If we add another nematic parameter ��
��mm /��, we can describe swelling curves of LC gels in an
isotropic phase, which is induced by the polymer-solvent in-
teraction, namely, � parameter �41�. In this paper �g keep
constant in an isotropic phase because of �=0. The param-
eter � has been discussed in phase separations of mixtures of
a polymer and a liquid crystal �39�.

We first consider the behaviors of the side-chain LC gel in
the absence of the attractive interaction between backbone
chains, cbb=0, which means that the nematic ordering is for-
bidden in the constituent pure flexible backbone chain. In
this case, the backbone chain interacts only with mesogens
through the interaction parameter cmb. Depending on the sign
of the cmb, we can expect variety of the phase transitions.
Figure 3 shows the phase diagram �swelling curve� on the
reduced-temperature ���-volume fraction ��g� plane of the
side-chain LC gel with t=10, b=1, nm=3, c=0.5, cmb=−1,
and cbb=0. The value of nb is changed. Solid curves show
the stable swelling curves of the gel and dotted curves cor-
respond to the unstable regions. The dash-dotted lines indi-
cate the first-order volume phase transition of the gels. At
higher temperature, the gel is swollen and is in an isotropic
state. On decreasing temperature, we have the first-order
phase transition from an expanded gel to a condensed state.
When nb=2, the condensed gel has the smectic-A �S1� phase.
The transition temperature decreases with increasing nb be-
cause of no coupling between backbone chains �cbb=0�. For
longer backbone chains, nb=6,9, we find the isotropic-
nematic �N1� phase transition �IN1� at a higher temperature.
On decreasing temperature, we have a discontinuous N1 to
S1 phase transitions �N1S1�. When nb is small, the mesogens
are densely packed at low temperature and then we have the
direct IS1 transition. On increasing nb, the nematic phase
appears since the smectic phase is diluted with long back-
bone chains.

Figure 4�a� shows the orientational order parameters Sm,
Sb, and the translational order parameter �, plotted against
the reduced temperature � for nb=6 in Fig. 3. The dotted
curves correspond to the unstable regions. At high tempera-
ture, the swollen gel is in an isotropic state with Sm=0, Sb
=0, and �=0. On decreasing temperature, we find the first-
order phase transition from an isotropic to a nematic N1
phase, where we have Sm�0, Sb�0, and �=0. Further de-
creasing temperature, the smectic order parameter � jumps

from zero to a finite value and the smectic S1 phase appears,
where we have Sm�0, Sb�0, and ��0. Figure 4�b� shows
the deformations �z /�iso and �x /�iso of the gel �Eq. �43��
plotted against the reduced temperature � for nb=6 in Fig. 3.
The value of �z is normalized by the deformation �iso in the
isotropic phase. In the N1 phase, we have �x /�iso�1 and
�z /�iso�1 and the gel is condensed and has an oblate shape
as shown in Fig. 1. The mesogens are parallel to the nematic
director �z axis� and the backbone chains are randomly dis-
tributed on the x-y plane. When the N1S1 phase transition
takes place, the value of �x /�iso jumps and the volume of the
gel is discontinuously changed. In the smectic-A phase, the
gel is strongly deformed by the jumps of the order parameter
�. From Eq. �46�, we see that the value of �z decreases with
decreasing temperature because the value of Sb is negative
and decreases with decreasing temperature in the N1 and S1
phases.

Figure 5 shows the phase diagram �swelling curve� on the
reduced-temperature ���-volume fraction ��g� plane of the
side-chain LC gel with t=10, b=1, nm=3, c=0.5, cmb=1,
and cbb=0. The value of nb is changed from 2 to 9. The solid
lines correspond to the stable swelling curve and the dotted
lines show the unstable regions. The dash-dotted lines indi-
cate the first-order phase transition between two phases.
When cmb=1, the mesogens tend to be parallel to the back-
bone chain. For nb=2, or a short backbone chain, we have
the first-order phase transition between an isotropic and a
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smectic S3 phase of the gel. For long backbone chains, nb
=6,9, we find the two phase transitions. One is the isotropic-
nematic N3�IN3� phase transition at a high temperature,
where the gel is discontinuously collapsed with decreasing
temperature. The other is the nematic N3–smectic S3�N3S3�
phase transition at lower temperature. The IN3 and N3S3
phase-transition temperatures shift to lower temperature with
increasing nb.

Figure 6�a� shows the order parameters plotted against the
reduced temperature for nb=6 in Fig. 5. The dotted curves
show the unstable regions. On decreasing temperature, the
IN3 phase transition takes place at �=0.28, where we have
Sb�0 and Sm�0 and the mesogens align parallel to the
backbone chain. Further decreasing temperature, the smectic
order appears at �=0.25 and we have the S3 phase with Sb
�0, Sm�0, and ��0. As shown in Fig. 5, the volume of the
gel discontinuously changes at the N3S3 phase transition.
Figure 6�b� shows the deformation ��z /�iso� of the gel plot-
ted against the reduced temperature for nb=6 in Fig. 5. In the
N3 and S3 phases, we have �z /�iso�1 and �x /�iso�1, where
the gel is condensed along the parallel to the nematic director
and the backbone chain has a prolate shape.

To understand the qualitative behaviors of the results, we
here expand the term ln�1−�g� in Eq. �68� in power series of
�g and Eq. �69� approximately is given by

1

c1

A�zz�g

2
−

1

J�g
−

n�g

3
= n1

2
− � − Y�Sm,Sb,��� ,

�73�

where we define

Y�Sm,Sb,�� �
1

2
�mmw2Sm

2 �1 + 3c�2� + �mbw�1 − w�SmSb

+
1

2
�bb�1 − w�2Sb

2, �74�

and the value of Y increases with increasing order param-
eters. When �g is large, or condensed nematic or smectic
phases, the third term of Eq. �73� balances with the right-
hand side and we obtain

�g � Y + � −
1

2
. �75�

The jump of �g at the phase-transition temperatures is of
order of the square of order parameters. From Eq. �45� trun-
cated the term of �zz

2 , we obtain

�zz
3 �

1

c1

A�Y + � − 1/2��1 + 2B1�

�76�

or

�z
3 �

�1 + 2Sb�
c1�1 − Sb��Y + � − 1/2��1 + 2B1�

, �77�

where B1 is given by Eq. �26�. The temperature dependence
of �z in the nematic and smectic phases is strongly related to
Sb and B1. For the N1 and S1 phases, the value of Sb��0�
decreases with decreasing temperature and then the value of
�z decreases with decreasing temperature as shown in Fig. 4.
For the N3 and S3 phases, the value of Sb��0� increases with
decreasing temperature and the value of �z has the same
temperature dependence with Sb as shown in Fig. 6. In the
smectic phases, the temperature dependence of B1 strongly
affects that of �z.

Finally we show the results for cbb=1, which means that
the nematic ordering can take place in the constituent pure
semiflexible backbone chain. Figure 7 shows the phase dia-
gram �swelling curve� on the reduced-temperature
���-volume fraction ��g� plane of the side-chain LC gel with
nm=4, t=10, c=0.7, cmb=−1, and cbb=1. The value of nb is
changed from 4 to 8. The solid lines correspond to the stable
swelling curve and the dotted lines show the unstable re-
gions. The dash-dotted lines indicate the first-order phase
transition between two phases. When cmb=−1, the mesogens
tend to be perpendicular to the backbone chain. For a short
backbone chain nb=4, we find the two phase transitions. One
is the isotropic-nematic N1�IN1� phase transition at a higher
temperature, where the gel is discontinuously collapsed with
decreasing temperature. The other is the nematic N1–smectic
S1�N1S1� phase transition at a lower temperature, where the
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volume of the gel discontinuously changes. For longer back-
bone chains �nb=6 and 8�, we have the first-order phase tran-
sition between the isotropic and N2 phase. The first-order
N2S2 phase transition appears at lower temperature, although
it is not shown in this figure. Percec et al. �25� experimen-
tally suggested that the formation of the mesophases, N1 and
N2, for side-chain LC polymers is determined by the degree
of polymerization of rigid-backbone chain. For short back-
bone chains, the nematic director is determined by the me-
sogens on the side groups and, for long backbone chains, the
director is determined by the mesogenic backbone chain.
Then, for long semiflexible backbone chains, the N2 phase
becomes more stable than the N1 phase. On increasing nb,
the isotropic-nematic phase-transition temperature shifts to
higher temperature because the attractive interaction between
backbone chains becomes dominant for cbb=1. Figure 8�a�
shows the order parameters plotted against the reduced tem-
perature for nb=6 in Fig. 7. The dotted lines show the un-
stable regions. On decreasing temperature, the IN2 phase
transition takes place at �=0.295, where we have Sb�0 and
Sm�0. As shown in Fig. 7, the volume of the gel discontinu-
ously changes at the IN2 phase transition. Figure 8�b� shows
the deformation ��z /�iso� of the gel plotted against the re-
duced temperature for nb=6 in Fig. 7. In the N2 phase, we
have �z /�iso�1 and �x /�iso�1, where the gel is condensed
along the parallel to the nematic director and the backbone
chain has a prolate shape as shown in Fig. 1. The appearance
of the S2 phase depends on the value of the smectic interac-
tion parameter c. For larger values of c, for example, when
c=1, we have the isotropic-smectic S2�IS2� phase transitions
without the nematic N2 phase. The LC gels lead to rich va-
rieties of the structural changes in a mesoscopic scale. The
conformations of backbone chains and mesogens are impor-
tant to understand the volume phase transitions of LC gels.

V. SUMMARY

We have presented a theory to describe
isotropic-nematic-smectic-A phase transition of side-chain
liquid crystalline gels and considered three different nematic
�N1, N2, and N3� and smectic �S1, S2, and S3� phases. We
calculate the swelling curves of the gel, the orientational or-
der parameters, and the deformation of the gel as a function
of temperature and the length of a backbone chain. We find

the discontinuous volume phase transitions of the LC gels at
an isotropic-nematic, an isotropic-smectic-A, and a
nematic-smectic-A phase transition. In the smectic-A phase,
the gel is strongly deformed by the order parameter �.

We also examined the swelling behavior of the LC gels
depending on the anisotropic attractive interaction cbb be-
tween backbone chains and the cmb between backbone chain
and mesogens. When cbb=0, which corresponds to flexible
backbone chains, the LC gel of short backbone chains
changes from an isotropic to a smectic-A �S1 or S3� phase
with decreasing temperature �Figs. 3 and 5�. For long back-
bone chains, a nematic �N1 or N3� phase appears at a
temperature range between an isotropic and a smectic-A
phases. In the presence of the anisotropic interaction
cbb�=1� between backbone chains, we have
isotropic-nematic-smectic-A �IN1S1 or IN2S2� phase transi-
tions. On increasing nb, the IN1 transition changes to IN2
phase transition. The conformation of backbone chains and
mesogenic side groups are important to understand the swell-
ing behaviors of the LC gels. We hope that these results
encourage further experimental studies of the volume phase
transitions of liquid crystalline gels.
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APPENDIX: FUNCTIONAL DERIVATIVES

In this appendix, we give the functional derivatives Eqs.
�48� and �49�. From Eq. �48�, we have

� �F

�fb���
�

�¯�
= � �Fel

�fb���
�

�¯�
+ � �Fnem

�fb���
�

�¯�
, �A1�

where the functional derivatives of the free energies Fmix and
Fsm with respect to the distribution function become zero
since the free energies Fmix and Fsm do not include the ori-
entational order parameter Sb. The required derivatives of F
are given by

�� �Fel

�fb���
�

�¯�
= D1��g,Sb,�,�z�P2�cos �� , �A2�

D1 �
�g

n  1

c1�g�1 − Sb�2�z
−

�z
2

�1 + 2Sb�2 −
3Sb

�1 + 2Sb��1 − Sb�

−
2b�2

nbt�1 + 2Sb�2� �z


1 + 2Sb

− 1�� 2�z


1 + 2Sb

− 1�� ,

�A3�

and

�� �Fnem

�fb���
�

�¯�
=

�b

nb
�ln 4fb��� + 1/�4�� − ��bb�b

2Sb

+ �mb�m�bSm�P2�cos �� . �A4�

We then obtain the distribution function Eq. �51�.
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FIG. 8. �a� Order parameters Sm, Sb, and � and �b� the deforma-
tions �z /�iso and �x /�iso of the gel, corresponding to nb=6 in Fig.
7, plotted against the reduced temperature ���.
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Similarly, from Eq. �49�, we have

� �F

�fm���
�

�¯�
= � �Fnem

�fm���
�

�¯�
+ � �Fsm

�fm���
�

�¯�
, �A5�

where we note that the free energies Fel and Fmix do not
include the orientational order parameter Sm. The required
derivatives of F are given by

�� �Fnem

�fm���
�

�¯�
=

�m

nm
�ln 4fm��� + 1/�4�� − ��mm�m

2 Sm

+ �mb�m�bSb�P2�cos �� , �A6�

�� �Fsm

�fm���
�

�¯�
= − ��m

2 �2P2�cos �� . �A7�

We then obtain the distribution function Eq. �53�.
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